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A Descriptive Statistics
Figure A.1 presents descriptive statistics for all predictors included in the various models.
Due to their skewed untransformed-distributions, nightlights, population, capital distance,
area, and GDP are log-transformed. Figure A.1 depicts these transformed distributions.
Continuous predictors are centered and scaled before analysis.
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Figure A.1: Descriptive statistics for predictors included in analysis. Continuous predic-
tors are shown centered and scaled. Demographic balance, horizontal inequality, GDP,
population density, nightlights, accessibility, and area are log transformed.

B Nightlights Considerations
One of the main downsides of the DMSP OLS data is that they are unable to distinguish
variationwithinurban areaswhere light levels are highdue to saturation fromneighboring
pixels (Hsu, Baugh, Ghosh, Zhizhin&Elvidge 2015). In these cases, all pixels in a saturated
area receive themaximum value. This phenomenon can be clearly seen in the area around
Beĳing in Figure B.1b. Luckily, I am interested in variation between entire ethnic group
territories, not within individual cities, so this is less problematic for my analyses.

Using the ‘cookie cutter’ approach (Cederman, Buhaug & Rød 2009, Cederman, Wei-
dmann & Gleditsch 2011, Cederman, Weidmann & Bormann 2015) requires correcting
for cells where multiple group territories overlap. I do this by dividing the cell value by
the number of group polygons that cover it for each cell in the raster data. For example,
a substantial portion of the Syrian Kurds’ settlement area overlaps with areas inhabited
by Sunni Arabs. Each raster cell in these areas has its nightlights value divided by 2
before aggregation to the group level, so the Kurds and the Sunnis each receive half of the
cell’s nightlights. While equal distribution of nightlights, and thus state capacity, between
overlapping territories is a strong assumption, it introduces less bias than ignoring the
problem. Doing nothing double counts the nightlights of overlapping cells, resulting in
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(a) Population (b) Nightlights

Figure B.1: China in 2013. Panel (a) displays (log) population and Panel (b) displays
nightlights. The gray dashed line denotes the Xinjiang Uyghur Autonomous Region,
while Beĳing is represented by the blue diamond.

the state devoting ‘extra’ attention relative to the total investment in a given region.
Another shortcoming of these data is that the units of brightness are not inherently

meaningful and are not stable over time. In addition to sensor drift within a satellite over
time, values are not comparable across satellites. Themaximumvalue in the data is 63, but
that does that not mean that 63 in two years of the same satellite is equivalent, or that 63
between two satellites is equivalent. Users of the data have developed an intercalibration
method to deal with these issues (Wu, He, Peng, Li &Zhong 2013). Essentially, geographic
regions that do not vary over time are identified, one year of data is chosen as a reference
raster, and then a model is fit using all other years to explain the invariant region in
reference year. The coefficients of this model represent the difference between a given
satellite-year and the reference raster. Once this model is trained, it is applied to the rest
of the world, adjusting estimates for all other years so that they can be compared to the
reference year. Following Wu et al. (2013), I select the Japanese prefecture of Okinawa,
the American territory of Puerto Rico, and the nation of Mauritius as invariant regions to
calibrate the DMSP OLS data.

C Population Considerations
As the population data (Center for International Earth Science Information Network -
CIESIN - Columbia University; United Nations Food and Agriculture Programme - FAO;
Centro Internacional de Agricultura Tropical - CIAT 2005, Center for International Earth
Science Information Network - CIESIN - Columbia University 2015) are only available in

3



five year intervals, I linearly interpolate the data for the intervening years. While a rather
blunt method of imputation, there are twomain reasons that this approach is appropriate.
First, measuring population on a yearly time scale already involves significantly loss of
information. Second, a parametric imputation approach that uses variables observed in
all years would either only be able to use country level variables, or would require the
collection of significant amount of data at the subnational level, which is prohibitively
time consuming. In either case, such an approach is unlikely to improve sufficiently over
linear interpolation to justify the time and effort.

D Missing Data
Table D.1 presents the missingness of explanatory and control variables. Due to the fact
that no variable hasmore than 10%of datamissing I treat these observations asmissing not
at random and multiply impute them (Rubin 1987) using the mice package (van Buuren
& Groothuis-Oudshoorn 2011), generating five imputed datasets. For all models with
missing data, I estimate two chains on each imputed dataset and then pool all 10 chains
together for inference.

% Missing
Polyarchy 0.90
Lost Autonomy 2.67
GDP per capita 6.00

Table D.1: Missingness of control variables.

E Estimation and MCMC Diagnostics
I estimate the models using the Stan probabilistic programming language (Carpenter,
Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li & Riddell 2017) in R
(?) via the RStan interface (Stan Development Team 2017). Due to missingness in the
variables, I multiply impute the missing values using the mice package (van Buuren &
Groothuis-Oudshoorn 2011). I generate 5 imputed datasets, run two chains on each, and
then perform inference on all 10 chains pooled together, averaging over the uncertainty
in different imputed values (Little & Rubin 2002, 217-218).1 I run four chains for 2,000
warmup iterations followed by 2,000 sampling iterations. All inference is based on the
sampling iterations. Standard diagnostics indicate good convergence of the chains.

This section presents diagnostics of MCMC samples for Model 6. Figure E.1 displays
the traceplots for the regression coefficients β. Each shade of grey represents a different

1Although it is possible to employ a model that jointly specifies the probability of an observation’s
absence alongside the parameters of interest, doing so is unnecessary in this case. When the proportion
of missing information in a dataset is low, this “uncongeniality” between separate imputation and analysis
models does not affect inference of imputed data (Meng 1994). The percentage of missing data in the data
is .24%, so this should not affect the validity of my inferences.
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chain, and the overlap between them provides evidence that the chains have converged to
the stationary distribution. Figure E.2 presents a plot of the Geweke diagnostic statistics
for β. The diagnostic tests whether the chain has converged to the stationary distribution
by comparing the means of the first 10% and final 50% of the samples in each chain.
Almost all estimates are within ± 1.96 standard deviations of the mean, offering further
evidence that the chains have converged to the stationary distribution.
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Figure E.1: Traceplot of samples for β in Model 4. Each shade of grey represents samples
from one chain initialized at different starting values.

F Political Exclusion
I also estimate models explaining the level of nightlights in a group’s territory using only
the subsample of politically excluded groups. Table F.1 replicates Table 1, while Table
F.2 replicates Table 2. The results are substantively similar, with the distribution of lost
autonomy being significantly more uncertain.

Figure F.1 displays a similar pattern of an increasing marginal effect of population on
nightlights as distance from the capital increases.

G Alternative Measures
The population Gini measure is calculated by treating each grid cell in the population
data as an individual in the standard Gini index formula in Equation G.1:

G =

∑n
i=1

∑n
j=1 |xi − xj|

2n2x̄
(G.1)
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Geweke Diagnostics

Figure E.2: Geweke diagnostic plot for β in Model 4. Dots are z-scores of the difference in
means of the first 10% and final 50% of the samples in each chain.

This excellently captures the theoretical concept of population concentration. While
Weidmann (2009) uses the Herfindahl-Hirschman index to measure population concen-
tration, his unit of analysis is ethnic group territory polygons, not grid cells within a
polygon. Thus, his data will have no instances of a unit with zero population. As the
Herfindahl-Hirschman index is a diversity measure, it ignores observations with a zero
value. This property is inappropriate when many observations have zero population
and these unpopulated grid cells indicate a more concentrated population. Each grid cell
with no population contributes to a higher Gini coefficient because between two territories
with equal population, the onewithmore unoccupied areaswill have amore concentrated
population overall.

Figure G.1 presents results for the reestimated Models 3 & 4.
The relationship between population Gini and nightlights is similar to that of total

population. Effect sizes are smaller, and model fit is worse when comparing WAIC and
RMSE. However, the relationship remains positive.

H Out of Sample Accuracy
Due to the stratified nature of the data, I conduct grouped k-fold cross-validation. In
this modification of k-fold cross-validation, entire states of ethnic groups are included
or excluded from the folds at a time. The reported RMSE of each model thus captures
its ability to predict nightlight levels in countries it has not seen before. In doing so, it
provides a more honest estimate of out of sample accuracy than the random split into
training and test sets provided by traditional k-fold cross-validation.
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Model 1 Model 2
Population 0.82∗

[0.81; 0.83]
Capital Distance −0.39∗

[−0.42; −0.37]
(Constant) 0.08 −0.07

[−0.16; 0.33] [−0.24; 0.10]
σα 0.66∗ 0.94∗

[0.58; 0.76] [0.83; 1.07]
σγ 0.50∗ 0.12∗

[0.37; 0.70] [0.09; 0.18]
WAIC 9509.90 19196.96
5-fold RMSE 0.37 0.58
Observations 11908 11908
∗ 0 outside 95% credible interval

Table F.1: Linear models explaining nightlights as a function of excluded ethnic group
population and capital distance. The standard deviation of the country and year random
intercepts are represented by σα and σγ, respectively. Continuous variables logged and
standarized.
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Figure F.1: Marginal effects of politically excluded ethnic group population on nighttime
light levels, conditional on distance to the capital.
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Model 3 Model 4
Population 0.74∗ 0.74∗

[0.72; 0.76] [0.72; 0.76]
Capital Distance −0.16∗ −0.16∗

[−0.18; −0.15] [−0.17; −0.14]
Population Total × Capital Distance 0.03∗ 0.04∗

[0.02; 0.04] [0.03; 0.05]
Area 0.05∗ 0.04∗

[0.03; 0.06] [0.03; 0.06]
Dominant Group Presence 0.03∗

[0.00; 0.05]
Lost Autonomy −0.01

[−0.11; 0.09]
GDPPC 0.25∗

[0.21; 0.28]
Polyarchy 0.05∗

[0.03; 0.07]
(Constant) 0.02 −0.05

[−0.22; 0.26] [−0.25; 0.15]
σα 0.66∗ 0.46∗

[0.59; 0.75] [0.41; 0.53]
σγ 0.46∗ 0.42∗

[0.34; 0.63] [0.31; 0.59]
WAIC 9113.98 8974.24
5-fold RMSE 0.37 0.37
Observations 11908 11908
∗ 0 outside 95% credible interval

Table F.2: Linear models explaining nightlights as a function of excluded ethnic group
population and capital distance. The standard deviation of the country and year random
intercepts are represented by σα and σγ, respectively. Continuous variables logged and
standarized.

I Robustness to Nonlinearities
While marginal effects plots can improve our understanding of interactive regression
models (Brambor, Clark & Golder 2006), they only provide part of the picture. Another
way to improve interpretability is to estimate Ŷ for a wide range of values and then
observe the relationship between the components of the interaction term and the outcome.
Figure I.1 presents the predicted value of nightlights as a function of capital distance and
population, which allows us to get a more complete sense of the relationship between
them. Predicted nightlights values are highest when capital distances are lowest and
population is highest, whichmakes sense as territory close to the capital is often inhabited
by ethnic groups in power and the state if frequently capable there.

8



Model 6 Model 7 Model 8
Population Gini 0.41∗ 0.16∗ 0.15∗

[0.40; 0.43] [0.14; 0.17] [0.14; 0.16]
Capital Distance −0.39∗ −0.34∗

[−0.40; −0.37] [−0.35; −0.32]
Population Gini × Capital Distance 0.00 0.02∗

[−0.01; 0.01] [0.01; 0.03]
Area 0.51∗ 0.43∗

[0.50; 0.52] [0.42; 0.44]
Excluded −0.28∗

[−0.30; −0.26]
Dominant Group Presence 0.07∗

[0.05; 0.10]
Lost Autonomy 0.20∗

[0.09; 0.32]
GDPPC 0.16∗

[0.12; 0.19]
Polyarchy 0.02

[−0.00; 0.04]
(Constant) 0.13∗ −0.01 0.05

[0.00; 0.27] [−0.13; 0.11] [−0.05; 0.16]
σα 0.68∗ 0.68∗ 0.57∗

[0.60; 0.78] [0.60; 0.78] [0.51; 0.65]
σγ 0.09∗ 0.10∗ 0.07∗

[0.06; 0.12] [0.07; 0.14] [0.05; 0.10]
WAIC 21992.23 14428.88 13590.21
5-fold RMSE 0.57 0.43 0.41
Observations 13854 13854 13854
∗ 0 outside 95% credible interval

Table G.1: Linear models explaining nightlights as a function of ethnic group popula-
tion Gini and capital distance. The standard deviation of the country and year random
intercepts are represented by σα and σγ, respectively. Continuous variables logged and
standarized.

At first brush, we would expect the level of state involvement to decline with distance
from the capital as it becomes more difficult for the agents of state to travel to various
locations. While distance still has a negative effect on state presence within a group’s
territory, highly populated territories have higher levels of state attention than similarly
populous territories located closer to the centers of state power. Given the increasing cost
of government activity in thesemore remote locations, this relationship suggests that there
must be a particularly compelling reason for governments tomake these investments. Fear
of secession and loss of territory is a valid concern that justifies such costly behavior.
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Figure G.1: Marginal effects of ethnic group population concentration on nighttime light
levels, conditional on distance to the capital.

However, the smooth prediction surface highlights the simplification entailed in the
model and emphasizes that it may not reflect more complicated relationships between
capital distance, population, and nightlights. To address these concerns, I fit a random
forestmodel to thedata. A randomforest is an ensemble of regression trees (Breiman1984),
each trained on a subset of the data (Breiman 2001). While random forests are designed
to maximize predictive accuracy, they can also be used to detect nonlinearities in the
relationship between variables and outcomes (Breiman 1984).

Figure I.2 presents a partial dependence plot (Friedman 2001, Greenwell 2017) of the
relationship between population, capital distance, and nightlights.2 A slight nonlinearity
is observable in the lower 2/3 of the plot, where areas with lower population have higher
nightlights close to the capital and very far away. This pattern supports my argument
that states are increasing their capacity in areas most prone to secession because similarly
populated areas at a middling distance from the capital have lower nightlights values.
State capacity is naturally high in areas close the the capital, and strategically high in areas
far from the capital and more governable.

The random forest model is fit using the randomForest package (Cutler &Wiener 2018)
in R. The model is fit using the default parameters of 500 trees, p3 = 1 variable randomly
chosen tomake each split, 23 of thedata randomly sampled for each tree,minimumterminal
node size of 5, and no cap on the number of terminal nodes in a tree. Partial dependence
is assessed using the pdp package (Greenwell 2017) in R as a function of capital distance
and population, marginalizing over the effect of area.

2This model includes population, capital distance, and the size of a group’s territory as predictors. For
full details, see the Supplemental Information.
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Figure I.1: Predicted nightlights as a function of capital distance and population.
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Figure I.2: Partial dependence of nightlights on capital distance and population.
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